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The wave-bearing behaviour of a finite flexible plate in a uniform flow is studied
when a source of continuous oscillatory excitation is present. The method of numer-
ical simulation is employed so that any prescription of response is avoided. A series
of numerical experiments is carried out and analysed using methods similar to those
applicable to a physical experiment. It is found that the plate can respond at fre-
quencies other than that of the driver; these frequencies may either be present in
the start-up procedure or be generated by wave conversions at the panel edges. At
early times in the response evolution, two types of behaviour are evident. These may
be separately characterized as response to low-frequency excitation and response to
high-frequency excitation. The former is dominated by spatially growing waves and
the latter by absolute stability. The long-time behaviour of the flexible panel shows
disturbance amplitude growth at all locations for flow speeds that approach zero in
the limit of an infinitely long flexible plate. For parameters corresponding to a realis-
tic flexible panel, the long-time growth of the deformation is found to be attributable
to a combination of low-frequency unstable waves which are capable of convecting
wall energy and thus disturbance growth to all parts of the flexible panel; the mech-
anism for this features repeated wave conversions at the panel ends. This convective
mechanism predominates despite the presence of an absolute instability found in
the system studied here. In the later stages of the flexible-panel response, the line
excitation is largely insignificant. An attempt is made to reconcile the observations
of the present numerical experiments with the predictions of hydroelastic boundary-
value studies of an infinitely long flexible plate and the rigorous structural-acoustics
approach to the problem in which causality is a key element.

Keywords: aero/hydroelasticity; structural acoustics; numerical simulation;
oscillatory excitation; finiteness effects; absolute/convective instability

Phil. Trans. R. Soc. Lond. A (1998) 356, 2999–3039
Printed in Great Britain 2999

c© 1998 The Royal Society
TEX Paper

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


3000 A. D. Lucey

Figure 1. Schematic of the finite flexible panel and line excitation. D is the region of high
damping.

1. Introduction

The interaction of a flexible panel with a fluid flow is a phenomenon which has been
widely studied in aero/hydroelasticity where the problem is usually described as one
of ‘panel flutter’. Hitherto, the practical concern has been that, in the long-time
limit, the flexible panel might experience destructive instability. However, a new
focus has relatively recently been given to this problem by workers in the structural-
acoustics community. In particular, Brazier-Smith & Scott (1984) and Crighton &
Oswell (1991) direct interest to the question of how the presence of an adjacent
fluid flow might affect the propagation of waves in the flexible wall. This subtle
change of emphasis has brought to light a complex variety of waves which might
exist within the simplicity of a system comprising a flexible plate interacting with
a uniform flow. Moreover, by adopting the approaches of structural acoustics, both
Brazier-Smith & Scott (1984) and Crighton & Oswell (1991) are able to incorporate
a source of disturbance in their theoretical models—an impulse excitation in the
former and continuous periodic line-excitation in the latter. This new feature begins
to address the important question of how disturbances might come into being; in
contrast, aero/hydroelastic stability studies are most often couched as boundary-
value problems. Furthermore, the location of the disturbance source divides a flexible
panel into upstream and downstream regions wherein different responses may be
manifest.

The present paper brings to bear a different approach—that of numerical
simulation—to study a set-up similar to that used in the Crighton & Oswell (1991)
problem. However, there exists an important difference in scope between the present
work and the very complete theoretical analysis of Crighton & Oswell which enables
them to evaluate both the flexible-plate and fluid-energy densities in addition to
isolating the energy fluxes associated with wave propagation in the coupled system.
Such an approach permits Crighton & Oswell to identify a rich variety of waves, some
of which possess very unexpected features and which may now be sought in other
wave-bearing systems. In contrast, the standpoint of an experimentalist is taken in
the present work. Here, the focus is placed entirely on characterizing the evolution of
wave-like disturbances in the flexible plate. In engineering applications, for example,
this information could be used to determine whether, and how, the amplification
of such disturbances might damage or destroy a flexible panel. Nevertheless, the
fluid effects are incorporated in the same way as in Crighton & Oswell so that any
waveform existing in the flexible plate is automatically accompanied by an identi-
cal waveform in the fluid. In the present work we evaluate the energy density of the
wave travelling in the flexible plate and use this to monitor the evolving deformation.
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The excitation of waves on a flexible panel in a uniform flow 3001

However, we are not able to evaluate the energy characteristics of the accompanying
wave in the fluid. Consequently, many of the unusual features found in Crighton &
Oswell (1991) may not be identified in the present study. Moreover, certain important
features of our set-up, illustrated in figure 1, differ from that of Crighton & Oswell
(1991); in particular, a finite flexible plate (i.e. a flexible panel) is studied here and
the start-up process is included. It will also be shown that the flexible-panel ends
can effectively act as wave converters, an effect identified in Crighton (1994), and
thus, ultimately, the driver is not the sole source of waves. The present approach is
also essentially experimental. Numerical experiments are conducted and data which
could be measured in a physical experiment are collected and interpreted while main-
taining an aero/hydroelastic perspective throughout; in the latter regard we are able
to investigate the viability of oscillatory excitation as a means of suppressing panel
instability.

Prior to discussing related work, we define the use of some terminology appear-
ing in this paper which could otherwise be misunderstood by workers in either
aero/hydroelastic or structural acoustics. The description downstream (upstream)-
travelling means that the phase speed of the wave, is positive (negative). By contrast,
upstream (downstream) propagation means that a spatially localized disturbance
measured at the wall, being either a single wave or a wave packet, is migrating in the
upstream (downstream) direction. Thus, propagation direction refers to the motion
of the energy concentration of the wave; the speed of this motion is given by the
magnitude of the wave’s group velocity.

Hydroelastic studies of flexible-wall stability largely fall into one of two categories:
the dispersion-relation approach—formulated as a force balance—of an infinitely long
flexible wall (see, for example, Benjamin 1960; Dugundji et al . 1963; Kornecki 1978)
and a Galerkin approach—formulated as an energy balance—for flexible walls of
finite length (see, for example, Weaver & Unny 1971; Ellen 1973; Garrad & Carpen-
ter 1982b; Lucey & Carpenter 1993b). In the first of these categories all disturbances
are assumed to be proportional to exp[i(kx−ωt)] where k is the wavenumber and ω
is the frequency. In general, both k and ω may be complex. However, in most hydro-
elastic studies, the investigator models, a priori, unstable waves as growing either
spatially or temporally. In the first assumption, ω is taken to be wholly real and the
spatial growth is represented by a negative imaginary part to k, while in the second
assumption k is wholly real and the wave is amplified at all spatial locations through
the positive imaginary part to the complex frequency. It has become common to
associate the spatial approach with convective instability. In contrast, the temporal
approach is not used exclusively for truly temporally growing, or absolute, instabil-
ities. More often than not, following the example of early hydrodynamic stability
theory, it is used as an approximate model for convective instabilities. Absolute and
convective instabilities can only be correctly identified by allowing both k and ω to
be complex and solving a proper initial-value problem where a source of disturbance
originating at a finite time and location is present. This is the path adopted by
Brazier-Smith & Scott (1984) and Crighton & Oswell (1991) in the context of the
present problem. The essential differences between convective and absolute instabili-
ties in fluid mechanics are presented in Gaster (1968) and Huerre & Monkewitz (1985,
1990). The application of these ideas to wall–flow interaction was initially addressed
by Brazier-Smith & Scott (1984) and is also discussed in Carpenter (1990). The
physical importance of this difference in a spatially homogeneous infinite domain
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3002 A. D. Lucey

Figure 2. Dispersion diagrams. (a) Overall characteristics for two flow speeds, U ′ = 0.05 and
0.0742. ——, ωR downstream at U ′ = 0.05; – – –, ωR upstream at U ′ = 0.05; - - - -, ωI at
U ′ = 0.05; · · · ·, ωR at U ′ = 0.0742.

is that, in the long-time limit, a convective instability produces no amplification of
a disturbance at any fixed spatial location whereas an absolute instability would
generate exponential growth at the same location.

Returning to the hydroelastic approach to the study of an infinitely long flexible
wall, the wall–flow system is easily solved when unsteady potential flow is assumed,
disturbances take the form exp[i(kx− ωt)] and just a single wave is considered. For
the case of an infinitely long flexible plate, the dispersive characteristics [D(k, ω) = 0]
are charted in figure 2a, b. For large wavenumbers, the system behaves qualitatively
as in the zero-flow limit: neutrally stable waves propagate upstream and down-
stream. Where there is strong flexible-plate–flow coupling at the lower wavenum-
bers, the upstream-travelling wave changes direction and finally coalesces with the
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Figure 2. Cont. Detail and group velocity, cg, for (b) U ′ = 0.05; (c) U ′ = 0.0742. ——, ωR

downstream; – – –, ωR upstream; - - - -, ωI × 1000 lower branch; · · · ·, cg × 0.01, lower branch.

downstream-travelling wave to yield a complex conjugate pair of roots. For the range
of wavenumbers between kb at the point of coalescence and kc where the lower branch
crosses the wavenumber axis, the introduction of flexible-plate damping—regardless
of how little—generates a positive imaginary part to ω for the lower-branch solu-
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tions. This suggests that waves in this range are unstable. The wave exactly at kc
is static; an equilibrium exists between the hydrodynamic force and the restorative
force in the flexible plate due to its bending. Divergence instability occurs when the
combination of wavenumber and flow speed is such that the flexible-plate deflection
generates a hydrodynamic force which exceeds the accompanying restorative struc-
tural force. The resulting amplification of the wave yields an increased difference
between these competing forces and continued growth ensues. Here, at a fixed flow
speed, a wave in the range kb < k < kc, would satisfy this criterion, if it were static,
because the hydrodynamic and plate-bending force densities are respectively propor-
tional to the second and fourth derivatives of the deflection. However, in the absence
of damping, the positive phase speed, c = Re(ω)/k, of any wave in this range is such
that the effective flow speed, (U∞ − c), experienced by the same wave held static
in a frame of reference moving at speed c, continues to yield a hydrodynamic force
which exactly balances the restorative force in the flexible plate and so ensures neu-
tral stability. Landahl (1962) explained that flexible-plate damping served to reduce
the wave phase speed marginally, causing the hydrodynamic force to overcome the
restorative force in the flexible plate, and thereby give rise to divergence instability.
The term ‘static divergence’ is often used by aero/hydroelasticians to describe this
instability because the critical point is at zero frequency; near the critical point,
growth of divergence is predicted as a low-frequency downstream-travelling wave.
The role of energy dissipation in divergence instability of an infinite flexible wall
led to its being classified as class A in the scheme of Benjamin (1963) and Landahl
(1962). (In the scheme used by Briggs (1964) and Cairns (1979) a class A wave corre-
sponds to a negative energy wave (NEW).) The modal-coalescence flutter instability
is described as class C, being of the Kelvin–Helmholtz type, while the conventional
modified flexural waves seen at high wavenumbers are class B (or positive energy
waves (PEWs)).

Hydroelastic studies of flexible walls of finite length use as their starting point a
disturbance form proportional to exp(−iωt) with the spatial dependence, or mode
shape, being decomposed into a collection of orthogonal modes which satisfy the
leading- and trailing-edge conditions. In marked contrast to the dispersion-relation
approach, the growth in divergence instability is predicted to occur as the amplifi-
cation of a standing-wave deflection and flexible-wall damping is not needed for its
realization. However, by finding asymptotic expressions for the integrals of general-
ized hydrodynamic forces, Carpenter & Garrad (1986) have extended the methods
used for finite flexible walls to study the limiting case of an infinitely long flexible
wall. They showed exact agreement with the dispersion-relation predictions of crit-
ical values for the divergence-onset flow speed and wavenumber when the flexible
wall possesses more than one structural component. For a simple infinite flexible
wall in the form of an unsupported flexible plate this critical flow speed would be
zero with the critical wavelength being infinite. However, for the case of the finite
flexible plate, i.e. panel, depicted in figure 1, the critical flow speed depends upon
the flexible-panel length because it is the fundamental mode which is first destabi-
lized by divergence as the flow speed is increased. The analyses of finite flexible walls
therefore strongly suggest that the divergence instability (which can be associated
with the lower branch of dispersion curve for Re(ω) > 0 in figure 2), is class C (i.e.
neither a NEW nor a PEW) because the instability is predicted to be an amplifying
standing wave and flexible-wall damping is not a sine qua non for its existence.
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The crucial differences of instability form (static deformation or travelling wave)
and the role of flexible-wall damping in the predictions of the two approaches
described above have in some measure been resolved by the numerical simulations of
Lucey & Carpenter (1992a). These yield onset flow speeds and critical wavenumbers
that find appropriate agreement with both of the analytical approaches. Close to,
but above the onset flow speed, they show that the instability manifests itself as a
slow downstream-travelling wave which, despite its downstream travel, shows growth
at all flexible-wall locations. Furthermore, damping is not required for its realization.
These features strongly indicate that it is an absolute instability†. Further support
for this assertion is found in the very recent work of Yeo et al . (1996), who iden-
tify the ‘pinch point’ associated with the divergence eigenmode on a compliant wall
with a boundary-layer flow. Experimental studies of divergence by Gad-el-Hak et al .
(1984), albeit on a different type of flexible (or ‘compliant’) wall, also indicate an
absolute instability. The differences between the studies of infinite and finite flexible
walls are discussed by Lucey & Carpenter (1993a) who present a heuristic argu-
ment to show that the condition of finiteness plays a role similar to the destabilizing
effect of damping in the hydroelastic stability of an infinite flexible wall. Landahl
(1962) explained that the effect of damping would produce the marginal reduction
of wave phase speed responsible for destabilizing the lower branch of figure 2a, b in
the range kb < k < kc. For an undamped finite flexible wall, Lucey & Carpenter
(1993a) argue that it is the constraint of zero motion at the ends of the flexible wall,
irrespective of its length, which provides the marginal reduction to the wave phase
speed, thereby causing the growth of divergence waves. Lucey & Carpenter (1993a)
also showed that finiteness generates locally non-conservative hydrodynamic forces
in the flexible-wall–flow system. In contrast, modelling an infinitely long elastic plate
with a potential flow yields a fully conservative system. These considerations sug-
gest that the analysis of an infinite flexible plate should incorporate the effects of
some flexible-plate damping. In a hydroelastic-instability analysis, this would render
unstable the whole of the lower branch of the dispersion curve in figure 2a for the
wavenumber range in which Re(ω) > 0. If the instability existing in this region were
not able to convect away, disturbance growth may dominate the response even when
oscillatory excitation is present. However, what such hydroelastic studies are unable
to predict is which unstable wave(s) would ultimately dominate the response.

Workers in structural acoustics (most notably Brazier-Smith & Scott (1984),
Crighton (1989), Crighton & Oswell (1991) and Abrahams & Wickham (1994))
include a line disturbance source in their model problem. This is the most significant
difference between their approach and those described above. In all of the studies
cited immediately above, an infinitely long flexible plate is assumed. The governing
equations and interfacial boundary conditions can then be transformed and solved
algebraically for the Fourier transform of the wall displacement. The inversion of the
transform necessitates invoking causality to identify the valid poles obtaining from
a pair of quintic dispersion relations, one appropriate to locations upstream and the
other to locations downstream of the driver. The linear response can then be written
as a superposition of the valid contributions for each half (upstream and down-
stream of the driver), of the flexible wall. Furthermore, when correctly formulated,
this approach rigorously determines whether an instability is convective or absolute.

† And class C in the scheme of Benjamin (1963) and Landahl (1962) (thus neither a PEW nor a
NEW).
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Brazier-Smith & Scott (1984) applied a line impulse excitation to initiate distur-
bances and charted the overall stability of the system. Above a certain flow speed,
absolute instability was found in the system. A dispersion diagram at this critical
flow speed is shown in figure 2a, c. Comparison with the subcritical result of figure 2b,
shows that this instability comes about through a coalescence of the lower branch seg-
ments [kb, ks] and [kp, kc]; the segment [ks, kp] disappears in the process of increasing
the flow speed. Alternatively, for the corresponding frequency range, [ω∗s , ω

∗
b], where

four wavenumber solutions were seen in figure 2b, only two wavenumber solutions
are seen in figure 2c. It is necessary to remark here that the real frequencies, ω∗b, ω∗s
and ω∗p labelled in figure 2b show a very small numerical difference from their coun-
terparts ωb, ωs and ωp in the work of Brazier-Smith & Scott (1984) and Crighton
& Oswell (1991). This is because the inclusion of flexible-plate damping when eval-
uating figure 2 makes all wave frequencies in the (k, ω)-plane complex. In this paper
we will continue to use ω∗p = Re{ω(kp)} to distinguish it from the wholly real value
ωp = ω(kp) at the pinch point in Brazier-Smith & Scott (1984) and Crighton &
Oswell (1991). Below Brazier-Smith & Scott’s critical flow speed, three regions are
discerned which may be categorized by frequency intervals. In the interval [0, ωs],
convective instability is predicted; this can be associated with the modal coalescence
seen in each part of figure 2. In the range [ωs, ωp], the resulting wave properties are
found to possess anomalous features; these can be associated with the lower branch
segment [ks, kp]. At higher frequencies, ω > ωp, (neutrally) stable waves are pre-
dicted; these are conventional modified flexural waves as are the upstream-travelling
waves with ω < 0 on the lower branch in figure 2a, b.

Following the basic approach used by Brazier-Smith & Scott (1984), Crighton
& Oswell (1991) conducted a comprehensive investigation of the system when the
flexible plate experiences continuous oscillatory line excitation. In their paper the
critical flow-speed value for the onset of absolute instability is first determined
exactly. Thereafter, attention is given to the subcritical response, especially in the fre-
quency range of anomalous propagation. An exact energy balance is formulated which
enables the total energy flux at a location either upstream or downstream of the driver
to be evaluated. To complement this approach, the ideas of group velocity and wave
energy classification are implemented to assess the direction of energy transmission.
Thus, for example, a neutrally stable wave is shown to exist downstream of the driver
which has positive (downstream-directed) group velocity and yet transmits energy
towards the driver. This corresponds to a wave on the lower branch of figure 2b in the
range [ks, kp]. Crighton & Oswell (1991) explain that because the driver is not the
sole source of energy available for transmission to the panel, such counter-intuitive
behaviour is acceptable in the system being studied. Furthermore, they calculate the
power of the driver and show that in the frequency range [0, ωp] the driver absorbs
energy while beyond it the more conventional behaviour of energy input is found.
This behaviour is shown to be entirely consistent with their analysis of energy trans-
mission caused by the waves found in each of the upstream and downstream halves
of the flexible plate. Their paper is of fundamental importance and concludes with a
careful list of the mode types that may be found in each of the upstream and down-
stream halves of the panel and within each of the frequency ranges demarcated by
the values of ωs, ωb and ωp. We will return to these waves later in the present paper.

Further work carried out by Crighton & Oswell has addressed the case of a finite
flexible plate. This work is described in Oswell (1992) and summarized by Crighton
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(1994). The ends are assumed to be located ‘infinitely far’ from the driver and the
case of free ends is studied. It is shown that the leading and trailing edges of the
flexible plate act as wave converters effectively yielding a system with three sources
of wave excitation. It will be seen that this multiple-source effect is also found in
the present work with fixed panel ends. Crighton (1994) shows that the Crighton
& Oswell (1991) analysis can be appropriately applied for the reflected waves either
downstream of the leading edge or upstream of the trailing edge. An additional
effect is that the free leading-edge interaction yields reflected waves with greatly
increased amplitudes as a result of energy conversion from the mean flow, while
the free trailing-edge interaction yields a reduction in reflected-wave amplitudes as
energy is propagated downstream of the flexible plate in the wake.

Recent work by Abrahams & Wickham (1994), not yet available in the literature,
has contributed to the present problem. In studying the case of continuous oscilla-
tory excitation, Crighton & Oswell (1991) argued that all transients generated in a
start-up process would, in the long-time limit, be convected away leaving all parts of
the flexible plate responding at the driver frequency. This is true in the absence of
absolute instabilities and so Crighton & Oswell focus on a flow speed which is sub-
critical. Abrahams & Wickham (1994) have included the start-up process wherein
all frequencies would be present, and modelled a damped flexible plate. We remark
that Brazier-Smith and Scott (1984) did not include flexible-plate damping in their
formulation but that a related study by Atkins (1982) found its inclusion to be desta-
bilizing for an ‘upstream incoming wave’. Abrahams & Wickham (1994) found that
any amount of flexible-plate damping—no matter how small—modifies the morphol-
ogy of the complex k-plane in their approach and so yields an absolute instability at
the point (kp, ω

∗
p) in figure 2b. This absolute instability would be found at any non-

zero flow speed. However, they show that the growth rate of this unstable wave is very
small and thus only in the long-time limit would the absolute instability dominate
the overall response of the flexible plate. These findings bear a number of similarities
with predictions made by Carpenter & Garrad (1986) using the dispersion-relation
approach for an infinitely long damped flexible wall. Carpenter & Garrad identify a
small positive part to the complex frequency for a wave at kp and recognize that this
wave has zero group velocity. This leads them also to speculate that in the long-time
limit the flexible-wall response would be dominated by this wave. However, it is only
through consideration of both the complex wavenumber and frequency planes that
Abrahams & Wickham (1994) have proved that it is an absolute instability. Both
Carpenter & Garrad (1986) and Abrahams & Wickham (1994) also suggest that a
second wall restorative force, in addition to that provided by bending of the flexible
plate, would be required to prevent an infinitely long flexible plate from ultimately
succumbing to absolute instability at zero flow speed. However, we note that for times
before this absolute instability came to dominate the wave field, the predictions of
Crighton & Oswell (1991) would continue to hold.

The present work first attempts to confirm independently the predictions of the
theoretical studies discussed above and to visualize the flexible-plate behaviour. How-
ever, agreement with the studies of infinitely long flexible plates can only be expected
to be limited. Finiteness evidently introduces the possibility of wave reflections at the
leading and trailing edges. So too is energy scattering possible. For a flexible panel,
even when disturbances are small enough for a linear representation of the wall
mechanics to give an accurate approximation, weak nonlinearities due the imposi-
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tion of fixed flexible-panel edges have been shown to exist by Garrad & Carpenter
(1982a) and Lucey & Carpenter (1993a). The effects of these nonlinearities are largely
confined to regions of the flexible panel close to its leading and trailing edges. As
recognized by Crighton (1994), the ability of the two flexible-panel ends to act in a
role of wavenumber conversion then yields a system wherein three sources of wave
excitation exist in contrast to the single source in the study of an infinitely long
panel. The second objective of the present work is to simulate the evolution of dis-
turbances on a flexible panel with fixed ends. In doing so we are able to establish the
sequence of events and wave generations that govern the final stages of the hydroe-
lastic instability of small disturbances. A series of numerical experiments is carried
out; the results that emerge detail the phenomena that could be anticipated in a
physical experiment, albeit an artificial one free of the effects of viscosity. A merit of
the numerical simulation is that any linear mechanisms which underly the destabi-
lization process can be identified whereas only the later stages of nonlinear response
are most likely to be observed in a physical experiment. Furthermore, the use of a
uniform flow in the present paper identifies instability mechanisms that cannot be
attributed to viscous effects which would exist in a physical experiment. However,
while allowing us to study the practical problem of a flexible panel, the numerical
simulation is unable to yield the precise quantitative results which can be achieved
in the analyses of an infinitely long flexible plate. Finally, the work of the present
paper may also be viewed as a step towards a more complete model of the excited
flexible-panel–flow interaction with nonlinear and viscous effects included.

The paper is laid out as follows: in § 2, the governing equations for the wall–flow
system are presented and the numerical scheme outlined. The results of numerical
experiments are presented in § 3. In the main these pertain to the two-dimensional
problem. However, the three-dimensional problem is also addressed and some results
are included; the principal purpose of these is to support the validity of the two-
dimensional assumption employed herein and in previous work on this problem.
Section 4 draws together the overall findings of the present series of numerical exper-
iments and compares these with the relevant aforementioned analytical studies, while
§ 5 summarizes the most important findings of the present work.

2. Theoretical and numerical model

The governing equation for small displacements, w(x, t), of the flexible plate illus-
trated in figure 1 can be written as

ρmhw,tt + dw,t +Bw,xxxx = −p(w,tt, w,t, w) + F cos(ωFt)δ(x− xF)H(t), (2.1)

where ρm, h, d and B are, respectively, the density, thickness, damping coefficient
and flexural rigidity of the panel. An improved, viscoelastic, model of plate damp-
ing would employ a complex elastic modulus for the plate material (for example,
see Lucey & Carpenter (1995) in the context of flow–structure interaction). How-
ever, this approach can only be used when the disturbances are assumed to vary
harmonically with time. An important feature of the present approach is that, as
in a physical experiment, the disturbances should be permitted to develop with no
prescribed restrictions in their form. Accordingly, the simple form of damping shown
in equation (2.1) is retained for the present work. On the right-hand side, the action
of the fluid flow is represented by the perturbation pressure (per unit width), p,
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generated by the dynamic deformation of the flexible panel. This term comprises
contributions which may be identified as hydrodynamic inertia (w,tt dependence),
damping (w,t dependence) and stiffness (w dependence). This terminology is dis-
cussed by Kornecki et al . (1976). The second forcing term represents oscillatory line
excitation located at xF with frequency and amplitude denoted by ωF and F . The
presence of the step-function, H, identifies the starting time of the point driver. In
the results that follow, hinged leading and trailing edges are assumed; these require
the imposition of w = w,xx = 0 at the join to the rigid surface. Alternatively, ‘built-
in’ leading and trailing edges could be modelled readily—and their effects have also
been studied—by modifying this condition to w = w,x = 0 at the panel ends.

To obtain the fluid pressure, we assume unsteady potential flow governed by the
Laplace equation:

∇2Φ = 0, (2.2)

where Φ is the perturbation potential with the total flow field given by U +∇Φ. The
kinematic boundary condition at the wall–flow interface, moving with velocity us, is

U · n+∇Φ · n = us · n, (2.3)

where n is the unit vector normal to the wall. Upon solution for Φ, the perturbation
pressure can be found through the unsteady Bernoulli equation:

−p = ρ

{
∂Φ

∂t
+ 1

2(U +∇Φ) · (U +∇Φ)− 1
2U ·U

}
. (2.4)

Solution of the Laplace equation is achieved by a distribution of source-sink singular-
ities of strength σ(s) (here s is a wall-fitted tangential coordinate) over the interface.
The perturbation potential is then given by

Φ(x) =
1

2π

∫
`

σ(s) ln |x− xs|ds, (2.5)

where x = (x, y) is a general vector location in the fluid and xs lies on the fluid
boundary, `. Imposition of the kinematic boundary condition (equation (2.3)) and
proper treatment of the singularity at x = xs leads to the following integral equation
which determines the singularity strength distribution, σ(s):

1
2σ(xs) +

1
2π

∫
`:x6=xs

σ(s)
∂

∂n
(ln |x− xs|) ds = (−U · n− us · n), (2.6)

the differentiation being in the direction normal to the wall. Equation (2.6) is solved
by discretizing the fluid boundary into a collection of surface panels and then satisfy-
ing the no-flux condition only at the panel control points, here assumed to lie at the
panel centres. This method was first presented by Hess & Smith (1967). Thereafter,
Φ can be assembled from the discretized form of equation (2.5) and the perturbation
pressures at the panel control points obtained from equation (2.4).

The solution method for the fluid, outlined above, is equally applicable to linear
and nonlinear deformations of the interfacial boundary. However, for nonlinear waves,
the structural side of the wall equation (2.1) would require modification to include the
effects of induced tension and curvature in the bending–stiffness term. The present
paper is confined to an investigation of small disturbances of the wall. To reduce
the computational effort, a linear boundary-element (or ‘panel’) method has been
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used. Thus, the integrals need only be carried out over the flexible part of the wall–
flow interface. To increase the accuracy of the solution without recourse to very
fine discretizations, a higher-order boundary-element method has been implemented.
Details of the method may be found in Lucey & Carpenter (1992a) and Lucey (1989).

The numerical method used to solve the present flexible-wall–flow system employs
a finite-difference representation of equation (2.1). The flexible surface is discretized
into a set of mass points which coincide with the panel ends used for the boundary-
element method. Linear interpolation is used to find the hydrodynamic pressure at
the mass points and the driver force added in at the appropriate mass point. A semi-
implicit time-stepping method, described in Lucey & Carpenter (1992a), is then used
to determine the evolution of disturbances on the flexible panel.

Finally, the non-dimensionalization scheme follows that introduced by Crighton
& Oswell (1991). The non-dimensional flow speed, excitation force and damping
coefficient are defined by

U ′ =
{

(ρmh)3/2

ρB1/2

}
U, (2.7 a)

F ′ =
{

(ρmh)2

ρ2B

}
F, (2.7 b)

d′ =
{

(ρmh)3/2

ρ2B1/2

}
d, (2.7 c)

while non-dimensional frequencies and wavenumbers are given by

ω′ =
{

(ρmh)5/2

ρ2B1/2

}
ω, (2.8 a)

k′ =
{

ρ

ρmh

}
k. (2.8 b)

In the results that follow, we will continue to use ρmh/ρ as the length-scale and
(ρmh)5/2/ρ2B1/2 as the time-scale.

3. Results of numerical experiments

Crighton & Oswell (1991) noted that non-dimensionalization reduces the system of
equations governing the behaviour of the infinite flexible-plate–flow system to one
with a single parameter, namely the dimensionless flow speed, when the fluid is
incompressible. We follow Crighton & Oswell and focus on the system response at
the flow speed U ′ = 0.05 which is below the critical velocity, U ′c = 0.074, for abso-
lute instability in their, and Brazier-Smith & Scott’s (1984), analysis. To facilitate
a suitable comparison, the flexible plate is undamped over most of its extent for the
results presented below. However, heavy damping is included near the leading and
trailing edges. This is done in conjunction with the choice of a long panel†. Thus,
for early times after start-up, the present numerical experiments should yield results
which can be compared with the theoretical predictions for an infinitely long flexible
plate. Thereafter, departures from the behaviour of an infinitely long system may
be expected. In the later phase of the finite-system response, where wave reflections

† Hereafter we will refer to the present finite-length flexible plate as a ‘panel’.
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and wavenumber conversions may be occurring at the panel ends, it may be thought
that the inclusion of this heavy damping exercises a significant effect. Accordingly,
numerical experiments have also been carried out with uniformly distributed plate
damping and for a wholly undamped panel. The results of these numerical exper-
iments, although not formally presented, will be discussed as departures from the
basic configuration. We wish to emphasize that the features found in the results
presented here, for an essentially undamped panel, are also typical of the responses
of damped panels thereby eliminating the effect of damping as a key ingredient in
the structural modelling. Most of the results presented here pertain to a single panel
length. However, all of the following simulations have been repeated using a longer
panel so that any features of the response dependent upon panel length may be
identified.

As stated above, the key variable in the wall–flow system is the flow speed.
Throughout the following results, a non-dimensional flow speed of U ′ = 0.05 is
used. In order to give an engineering ‘feel’ for dimensional system parameters, this
can be equated to a water (density ρ = 1000 kg m−3) flow of U = 0.908 m s−1

over an aluminium (elastic modulus, E = 70 MPa; Poisson ratio, νp = 0.3333; den-
sity, ρm = 2710 kg m−3) panel of thickness h = 5 mm. When using these wall and
fluid properties, the frequency bounds, ωs and ωp, of Crighton & Oswell’s (1991)
region of anomalous propagation, respectively, take the dimensional values 3.027 and
3.169 rad s−1. The non-dimensional time period, ∆T , used throughout this paper,
represents 1340 of the natural non-dimensional time units discussed in § 2. The size of
∆T is better appreciated as closely approximating a half wave period at ωp. Alterna-
tively, for the physical data suggested above, the dimensional value of ∆T is exactly
1 s.

The heavy damping adjacent to the leading and trailing edges which is present
in the basic configuration of an otherwise undamped plate, covers 5% of the panel
length, L. In the basic configuration, the panel has dimensional length L = 10 m,
which gives L′ = 738. For the aluminium panel suggested above, this is equivalent to
about eight wavelengths with wavenumber kp. In simulations for which distributed
damping has been included, a range of values has been tested. This range covers
values from zero up to a maximum non-dimensional coefficient, d′ = 5.5× 10−4. The
upper limit represents an attenuation of approximately a half wave amplitude per
cycle at the frequency ωp. This maximum value is far in excess of that which could
be associated with the sample physical data given in the preceding paragraph. The
purpose of exploring such artificially high values is to identify any dependence of
response on flexible-plate damping.

Analysis of the data provided by each numerical experiment is carried out in a
number of ways. The displacement of a single panel point can be monitored during
the passage of time. This has been recorded for two points which are ±0.2L from
the driver. Power spectra of the time-series that are captured then yield the fre-
quency components of the disturbances at these points. Instantaneous wall profiles
(or ‘snapshots’) at different times in the simulation provide a visual impression of
the wave response. Power spectra of these—carried out separately for the upstream
and downstream halves—yield the wavenumber components of the response at the
particular time. Together with frequency components prevalent at the specified time
and location, (k, ω) data can be collected to be compared with those predicted by
the dispersion diagram. In addition to the visual data provided by the snapshots
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of the panel deflection, further elucidation of the character of the dominant waves
in the upstream and downstream of the driver is provided by flexible-plate energy
measurements. For each half of the panel, the strain, ES, kinetic, EK, and total, ET
(= ES + ET) energies are calculated at each time step of the simulation. A further
energy quantity described as the ‘virtual work done by the hydrodynamic stiffness’,
EVW, is also evaluated. The dimensional energy terms are calculated through the
following expressions:

ES = 1
2
B

∫
w2
,xx dx, (3.1 a)

EK = 1
2
ρmh

∫
w2
,t dx, (3.1 b)

EVW = −1
2

∫
wp(0, 0, w) dx. (3.1 c)

The quantity EVW was introduced by Lucey & Carpenter (1992a); it can be inter-
preted as an averaged measure of the hydroelastically destabilizing forces applied
to the flexible wall by the pressure. When this term exceeds the strain energy, the
flexible-wall deformation is such that self-sustaining hydroelastic instability of a panel
can exist. We remark that, in common with aero/hydroelastic studies of panels, such
criteria only provide an overall indication of whether the panel is unstable. In an
engineering context, a sustained growth of panel energy is the principal concern.
Further to the identification of such instabilities, the energy records are able to give
a comparative measure of the severity of the instability.

The above energy considerations provide a means of recognizing overall instability
of a panel. Of scientific interest is the identification of the detailed wave behaviour
that constitutes the overall instability mechanism. The methods described above are
insufficient to provide details of energy flux, group velocity or wave energy classifi-
cation in the formal manner presented by Crighton & Oswell (1991) for an infinitely
long flexible plate. Moreover, the present numerical approach does not permit evalu-
ations of fluid-energy terms and so we cannot ascertain, for example, the total energy
flux associated with the simultaneous propagation of waves in both media of the cou-
pled system. Instead, the present work necessarily focuses on the panel alone (with
the fluid-flow effects included) and adopts methods closer to those found in physical
experiments. Our restricted goal, then, is to expose sequences of panel deformations
and energy fluxes within the panel that would characterize its behaviour and which
might be observed in a physical experiment. Thus, we also generate data for the evo-
lution of the spatial distribution of wall energy along the panel. This can be done for
the driver running continuously or with the driver switched off at some time during
the simulation. The switch-off experiment is then able to determine the propagation
direction of a disturbance and approximate its propagation speed. Thus, the prop-
agation of unstable waves found in the present work can be classified as convective
or absolute using the criteria presented in the ray diagrams of Huerre & Monkewitz
(1990).

Other data collected include a record of the power input by the driver against
time along with the rate of energy dissipation by the heavy damping adjacent to
the panel’s leading and trailing edges. Finally, to assist in the understanding of all
of the numerical experiments, computer-generated moving images have been made
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which, at least approximately, simulate a physical experiment; these are useful in
qualitatively identifying wave phase velocities.

Before moving to the results, it is noted that the numerical simulation has been
thoroughly tested to verify the integrity of the method and determine the required
mesh resolution; this task is documented in Lucey (1989). For the present use of
the method, simulations have been carried for a driven panel in vacuo and in the
presence of a fluid with U ′ = 0. For the range of frequencies and wavelengths typical
of the following investigation, excellent agreement is found with the appropriate
dispersion diagrams wherein there is reflectional symmetry in the wavenumber axis.
The continuous power input by the driver is transmitted out to the leading and
trailing edge damping zones by the flexural waves. The rate of dissipation in these
zones exactly balances the driver input and a steady state is established. Thus, for
conventional flexural waves, the present panel behaves in a manner identical to that
of an infinitely long flexible plate.

(a) Two-dimensional simulations

Results of two numerical experiments are presented here. These are described
below under the subheadings ‘low-frequency excitation’ and ‘high-frequency excita-
tion’. The results typify, respectively, the panel behaviour in each of the ranges of
excitation frequency, ωF, given by 0 < ωF < ωp and ωp < ωF. The non-dimensional
value of ωp is 0.002365 and, as can be seen in figure 2b, it is the frequency associated
with the maximum on the lower branch of the dispersion curve.

(i) Low-frequency excitation: ωF = 0.001492

Presented in figure 3a–e are snapshots of the wall deflection at times 4∆T , 8∆T ,
10∆T , 14∆T and 16∆T after start-up of the driver which is located at the panel
midchord. Energy records for each of the upstream and downstream halves are given
in figure 4a, b. In figure 5 we record the principal waves found, as approximate
(k,Re(ω))-data, at different times of the numerical simulation on the background
of a dispersion curve. Each wave has an alphabetic label which is assigned in the
description that follows below.

For early times of the numerical simulation, the wall behaviour is typified by the
plot at t′ = 4∆T . Downstream of the driver, a spatially growing unstable wave is
found (wave A). This ties in with the prediction of convective instability by Crighton
& Oswell (1991) except that the frequency of the response is different from that of
the driver; it is, in fact, substantially higher. This difference in frequency owes its
existence to the start-up process and persists indefinitely. In contrast, the analysis
by Crighton & Oswell is based upon the assumption that the response and drive fre-
quencies are identical. Other simulations at lower driver frequencies than the present
one also show the same feature and very similar response frequency. Presumably,
the most amplified wave is selected from the wave packet generated in the start-
up process. In the upstream half two waves can be discerned. One (wave B) is the
anticipated upstream-travelling modified flexural wave associated with −ωF of the
dispersion curve included in figure 5. (Throughout this paper we will continue to
use the description ‘modified flexural waves’ as shorthand for ‘fully coupled fluid
loaded structural waves with mean flow’.) The second (wave C), is a downstream-
travelling wave which has a lower wavenumber than the first and can be associated
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Figure 3. Low-frequency excitation (ωF = 0.001492). Instantaneous wall profiles for U ′ = 0.05
at different times: (a) t′ = 4∆T ; (b) t′ = 8∆T ; (c) t′ = 10∆T ; (d) t′ = 14∆T ; (e) t′ = 16∆T .

with Re(ω) > 0 on the lower branch of the dispersion relation. The upstream energy
record at early times indicates that wave C is hydroelastically unstable although
there is not firm evidence of exponential growth. We can show that wave C prop-
agates wall energy density in the upstream direction and has the same identity as
the wave illustrated and discussed in figure 7. In contrast, the downstream energy
record evinces definite growth of wall energy associated with the spatially growing
instability, wave A.

In order to elucidate the character of the spatially growing wave (A) in the down-
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Figure 4. Energy records for low-frequency excitation for (a) upstream of driver and (b) down-
stream of driver: ——, strain energy, ES; – – –, kinetic energy, EK; – · – · –, total energy, ET;
◦, virtual work done by the hydrodynamic stiffness, EVW.

stream half of the panel, a further numerical experiment was undertaken. The same
parameters were used as for figure 3 except that for this simulation the driver was
switched off at 2∆T . The choice of 2∆T ensured that the wavefront had not yet
reached the trailing edge of the panel. The purpose of this experiment was to remove
the source of the wave and monitor its ensuing development. However, in this experi-
ment, it emerged that disturbances already excited in the upstream half of the panel
were able to act as a disturbance source for wave A. The effective origin of this wave
then quickly moved upstream until a steady state was established whereby the lead-
ing edge became the source of the wave. To prevent this happening, we artificially
introduced heavy damping in the upstream half of the panel at the same time as
switching off the driver. The results of this modified experiment are presented in
the waterfall diagram of figure 6. Plotted there is the wall strain-energy density in
the downstream half of the flexible panel. Plots of total wall energy density showed
similar features but were marred by high-frequency transients generated by the sud-
den artificial imposition of the high plate damping in the upstream half at 2∆T .
Note that at the later times shown in figure 6, a high value of wall energy density
is accumulating at the trailing edge of the panel and that this is associated with
a wave of different periodicity. It is evident from figure 6 that the wave behaves
like a convective instability. Sketched in figure 6 are suggested rays of propagation
for the wave packet. From these rays an estimation of the non-dimensional mean
propagation speed of the wall energy density is found to be 0.043. This value shows
agreement with the group velocity of 0.045 prevailing in the modal-coalescence region
of the dispersion diagram of figure 2b. For the panel length chosen for this simulation
we also note that, at the experimentally determined propagation velocity of 0.043,
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Figure 5. Locations of waves seen in figure 3 plotted in the k–ω plane together with the dispersion
curve and value of excitation frequency, ωF: open symbols, upstream response; filled symbols,
downstream response. Alphabetic labels of data points are referenced in the text.

the wall energy carried by wave A would reach the trailing edge at approximately
t′ = 6∆T .

Figure 3b, at t′ = 8∆T , illustrates the next stage of the panel response. In the
downstream half, a new unstable wave (wave D) of shorter wavelength has developed
from the trailing edge. This wave can be identified with the branch [kp, kc] of the lower
branch of the dispersion curve plotted in figure 2b. Moving images confirm that it is
a downstream travelling wave. However, the wall energy density propagation of this
disturbance is in the upstream direction, as can be seen in the waterfall diagram of
figure 7 which covers its development for times t′:8∆T → 10∆T . In this diagram the
sums of wall strain- and kinetic-energy densities are plotted for the downstream half
of the panel. Suggested rays for the wave packet have been sketched in. Two features
are apparent in this diagram. First, the growth rate of the dominant wave component
is small and secondly, the instability is convective in that it propagates upstream.
The non-dimensional mean propagation speed has been estimated as 0.043. We note
that this value and the direction of propagation corresponds with a group velocity
of −0.040 found on the dispersion diagram of figure 2b at the k-value of wave D.
Although the growth rate of wave D is lower than that of wave A found in the initial
stages—a feature observable in the time range t′:8∆T → 12∆T of the energy record—
it becomes the dominant wave in the downstream half. This phenomenon ties in with
the convective nature of wave A which is limited by the panel length in its ability
to convert fluid energy to wall energy. In the upstream half, a new wave (wave E)
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Figure 6. Evolution of wall strain-energy density for the wave type found downstream of the
driver in figure 3a. In this simulation the driver has been switched off at t′ = 2∆T otherwise
the parameters are identical to those of figure 3.

has also developed. This appears to originate at the leading edge and represents a
spatially growing instability of the same type as wave A found at early times in the
downstream half. That it is an unstable wave is confirmed by the upstream energy
record. In addition to the above waves, power spectra—not presented here—identify
a response component at ω∗p, and the associated wavenumber, located in the central
part of the panel. As recognized by Abrahams & Wickham (1994), this corresponds
to an absolute instability. It originates in the start-up process and shows little spread
away from its point of initiation. Low-intensity traces of this wave continue to appear
in the power spectra through all stages of the panel’s response. In this low-driver-
frequency experiment the growth rate of this ω∗p wave is so small as to render it
insignificant alongside the dominant effects of the spatially growing instabilities which
are concurrently present. However, it will be seen that it plays an important role in
the destabilization process of the panel when a high-frequency excitation is used.

At t′ = 10∆T (figure 3c) the upstream-propagating wave D, discussed above, has
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Figure 7. Evolution of the total wall energy density for the wave type found downstream of the
driver in figure 3b, c.

come to occupy most of the downstream half of the panel. Following this stage,
figure 3d, plotted at t′ = 14∆T , indicates a dramatic change in the instability mech-
anism. The upstream-propagating wave D has migrated through to the upstream half
of the panel and has effectively supplanted the long-wavelength disturbance (wave E)
which appeared at earlier times. This behaviour is consistent with the estimated
mean propagation speed of the disturbance; at a speed of 0.043, the time difference
between figure 3c and 3d translates into a propagation distance of about one-third of
the panel length, L. The spatially growing wave E, triggered by the leading edge, has
now penetrated the downstream half where it becomes the dominant wave. This is a
far more unstable wave, as is evidenced by the downstream energy record for times
after its establishment at t′ = 14∆T . For the plot at t′ = 16∆T (see figure 3e) contin-
uous growth of this wave is occurring in the downstream half. Upstream of the driver
another wavenumber conversion has taken place. The upstream-propagating wave D
interacts with the leading edge and launches another downstream-propagating insta-
bility, denoted wave F. We note that the timing of this interaction is again consistent
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Figure 8. Records of driver power and energy-dissipation rate at the panel ends for low-frequency
excitation: ——, driver power; – – –, total dissipation rate at panel ends; – · – · –, dissipation
rate at upstream end; - - - -, dissipation rate at downstream end.

with the progress of the upstream-propagating wave D; the measured mean propaga-
tion speed suggests a convection distance of 0.7L between the disturbance location
seen at t′ = 8∆T (figure 3b) and 16∆T (figure 3e). Similarly, the spatially growing
wave E that appeared at t′ = 8∆T has reached the trailing edge at t′ = 16∆T and
can be seen in figure 3e to be exciting a new wave (wave G) of shorter wavelength
which has the same properties as the upstream-propagating wave D featured in the
waterfall diagram of figure 7.

Thus a pattern of behaviour is set up. Two broad types of wave dominate the
panel response. These we will term type I and type II. Both type I and type II are
downstream-travelling waves and the disturbances are convectively unstable. Con-
trasting the two, type I has a long wavelength, high growth rate and propagates wall
energy density in the downstream direction, while type II propagates wall energy
density in the upstream direction, has shorter wavelength and a smaller growth
rate. Waves A, E and F are type I and waves C, D and G are type II. The repeated
exchanges between type I and type II waves ensure disturbance growth at all locations
of the panel and yield globally unstable (in the terminology of Akhieser & Polovin
(1971)) behaviour of the flexible panel. The importance of the type II wave is not
that it significantly contributes to the overall growth of panel energy (its growth rate
is very small), but that it transmits wall energy in the upstream direction. Upstream-
travelling modified flexural waves, excited by the driver or the trailing edge of the
panel, are also capable of transmitting wall energy upstream. However, modified flex-
ural waves would be eliminated by panel damping in a real situation whereas the
type II wave is largely unaffected by damping. The driver appears to exercise very
little influence once the wave conversions get under way and thus the evolution iden-
tified above holds for all excitation frequencies in the range 0 < ωF < ωP . Moreover,
once the effects of panel finiteness have taken effect, the driver can be switched off
with little modification to the ensuing sequence of events. For the present numerical
experiment the presence of the driver is insignificant after approximately 8∆T .

In figure 8, a record of the driver power and rate of dissipation at the panel ends
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Figure 9. Instantaneous wall profiles at different times for low-frequency excitation. The panel
length is 1.5L; otherwise the parameters are identical to those of figure 3: (a) t′ = 11∆T ; (b)
t′ = 12∆T .

is presented for the time range t′:0 → 8∆T . It is immediately evident that, after
start-up, the driver absorbs energy as predicted by Crighton & Oswell (1991).

An equivalent numerical expriment has been carried using a panel of length 1.5L
instead of L. In figure 9a, b, we present two snapshots which are obtained at times
t′ = 11∆T and t′ = 12∆T . At early times, the longer panel behaves in a manner
identical to that of the shorter panel which was described at length above. However,
the stage characterized by the spatially growing wave (type I), clearly evident in
figure 3a, has a greater timespan in the case of the longer panel. On this longer panel,
it also gives way to the type II shorter-wavelength disturbance capable of propagating
wall energy density in the upstream direction. Its appearance is evident in figure 9a
which is very similar to the shorter panel’s development between t′ = 7∆T and 8∆T
(the latter is plotted in figure 3b). This time difference agrees with approximate
predictions obtained by considering the mean wall energy density propagation speed
estimated for the type I wave of figures 3a and 6. The non-dimensional value of
0.043 would imply a time delay of about 3∆T in the launch time of the type II wave
on this longer panel. This verifies the assertion that the type II wave is generated
at the trailing edge by the arrival of the type I wave. A similar effect is found in
the upstream half of the panel; the emergence of the wave seen in figure 9b can be
compared with that of figure 3b. The time delay in its appearance—when contrasting
numerical experiments for the two panel lengths—can be closely predicted using a
mean wall energy density propagation speed for the type II wave which, at the start
of the simulation, emanates from the driver. Thus, for the response evolution, the
only difference engendered by increasing the panel length is that longer times occur
between the wave conversions, owing to panel edges, that were discussed in detail
for the standard length.

The complete exclusion of damping throughout the panel makes little difference
to the pattern of wave generation and growth of wall disturbances identified for
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Figure 10. High-frequency excitation (ωF = 0.01343). Instantaneous wall profiles for U ′ = 0.05
at different times: (a) t′ = 2∆T ; (b) t′ = 4∆T ; (c) t′ = 8∆T ; (d) t′ = 16∆T .

the basic configuration. However, a high-frequency response is superimposed upon
the panel deformations seen in figure 3a–e. For example it is noted that upstream-
travelling modified flexural waves, consistent with the dispersion diagram, may be
initiated by the trailing edge. Furthermore, the absence of plate damping appears
to facilitate the establishment of the longer-wavelength type I instability manifest
upstream of the driver in figure 3e. As a consequence, disturbance amplitudes at
t′ = 16∆T are greater upstream of the driver when compared with those downstream
of the driver†. In a similar numerical experiment in which distributed panel damping
is used, again there is little departure from the wave evolution found for the basic
configuration. However, like the zero-damping case, it is found that in the late stages,
wave amplitudes upstream exceed those found downstream of the driver. In the
basic configuration, with heavy damping adjacent to the leading edge, we may then

† It is, of course, recognized that the entire absence of damping means that energy input by the driver
may be trapped in a finite panel and lead to amplitude growth of neutrally stable waves.
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Figure 11. Power spectra associated with the response to high-frequency excitation: (a)
ω-spectrum for t′:0 → 4∆T ; (b) k-spectrum at t′ = 4∆T . Legend: panel response at: ◦, mid-
point; , upstream of driver; , downstream of driver. ωF is the driver frequency, (kp, ωp) is the
maximum on the lower branch and kU and kD are, respectively, the wavenumbers of the modi-
fied flexural waves, upstream and downstream of the driver, predicted by the dispersion-relation
approach.

question its apparent role in partially inhibiting or delaying the formation of the
type I instability that is launched by the arrival of wall energy propagated in the
upstream direction by the type II wave. In fact, it suggests that the type II wave is
attenuated by the heavy damping so reducing its effectiveness in providing energy
for the wave conversions. Furthermore, these further numerical experiments have
shown that the growth of the type II wave is not a result of wall damping. On the
contrary, wall damping acts in its conventional role of reducing the growth rates of
both the type I and type II unstable wall waves. We may therefore conclude that
panel damping does not play any significant part in the destabilization mechanisms
of a panel with fixed leading and trailing edges.

(ii) High-frequency excitation: ωF = 0.01343

Figure 10a–d shows snapshots of the wall deflection at times 2∆T , 4∆T , 8∆T and
16∆T . Again, these times have been selected because each represents a distinct step
in the overall evolution of the panel’s response. In figure 10a, the panel response is
seen to be one of modified flexural response. Neutrally stable waves (waves J and K)
travel out from the driver and are attenuated in the regions of heavy damping adja-
cent to the panel ends; thus, after start-up a steady state has been established which
is entirely in agreement with the waves at this frequency predicted by the dispersion
diagram. However, there is some evidence of wave modulation in both halves of the
panel. This is particularly pronounced in deflection time-histories of single points on
the panel (not presented here). The wave amplitude is smaller upstream of the driver
because the upstream travelling wave has a larger absolute value of group velocity,
so activating the leading-edge damping sooner.
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Figure 12. Energy records for high-frequency excitation (a) upstream of driver and (b) down-
stream of driver: ——, strain energy, ES; – – –, kinetic energy, EK; – · – · –, total energy, ET;
◦, virtual work done by the hydrodynamic stiffness, EVW.

Following from the above, figure 10b at t′ = 4∆T , shows that the growth of the
modulation is such that downstream of the driver a new wave (wave M) has devel-
oped. Upstream of the driver, the modulation noted at t′ = 2∆T is more prominent.
Figure 11a, b shows power spectra for the frequency and wavenumber associated with
times t′:0 → 4∆T and the wall profile seen in figure 10b. In addition to the signal
at ωF, a further low-frequency wave has been excited in the start-up process. At
these early times, wave M appears in the downstream half of the panel although
at later times it can also be identified upstream of the driver. Associated with this
new frequency is the lower wavenumber, kp, which appears in figure 11b along with
the wavenumbers, kd and ku, of the expected modified flexural response (waves J
and K). The energy records for this numerical experiment are shown in figure 12a, b;
the downstream half of the panel shows an increase setting in at about t′ = 4∆T
after a period of steady-state behaviour. Thus the new low-frequency wave M that
has appeared represents a hydroelastic instability. The location of wave M in the
(k, ω)-plane can be seen in figure 13. It is significant that it lies very close to the
point (kp, ω

∗
p) where the group velocity is zero. That it owes its origin entirely to

preferential amplification in the start-up process has been verified by repeating the
numerical experiment with a panel of length 1.5L. The corresponding power spectra
are identical to those discussed above, as are the deflection profiles at these early
times. Thus, the selection of this frequency very close to ω∗p is neither an overall res-
onance of the system nor an effect generated at the leading and trailing edges. It is
also recorded that similar numerical experiments using a panel comprising a flexible
plate which is either wholly undamped or has uniformly distributed damping, yield
almost identical results to those presented here.
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Figure 13. Locations of waves seen in figure 8 plotted in the k–ω plane together with the
dispersion curve and value of excitation frequency, ωF: open symbols, upstream response; filled
symbols, downstream response. Alphabetic labels of data points are referenced in the text.

To appreciate the character of this (kp, ω
∗
p)-type wave M, an associated numerical

experiment has been conducted. The numerical simulation that yielded figure 10 is
repeated, except that the driver is now switched off at t′ = 2∆T . At the switch-off
time, figure 10a has shown that the steady-state modified flexural response is fully
established. Thus, in figure 14 a waterfall diagram of the sum of the panel’s strain-
and kinetic-energy densities is presented for a sequence of times after the driver has
been switched off. For clarity, only results for the downstream half of the panel are
plotted. At early times, there is evidence of the wall energy of the modified flexural
wave (wave J); in the absence of a source of excitation, this wave then dies away.
Subsequently, an unstable wave (that is identified in figure 10b as wave M) appears.
Rays suggesting the propagation of the edges of the wave packet have been sketched;
these attempt to highlight the absolute nature of this unstable behaviour. Wave M
can therefore be identified with the absolute instability that exists at ω∗p as predicted
in the analysis of Abrahams & Wickham (1994).

As the unstable wave M elucidated by the ‘switch-off’ numerical experiment ampli-
fies, wall energy is carried to the trailing edge of the panel. Thus the next stage of
response, represented by figure 10c, sees the development of a shorter wavelength dis-
turbance (wave N) near the trailing edge. Identified in the (k, ω)-plane of figure 13,
it lies slightly to the right of the maximum of the lower branch. Moreover, we are
able to show that it possesses exactly the same character as the type II wave which
appeared in figure 3b (and in figure 6) at the trailing edge in the simulations for low-
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Figure 14. Evolution of total wall energy density for waves found downstream of the driver in
figure 10a, b. In this simulation the driver has been switched off at t′ = 3∆T , otherwise the
parameters are identical to those of figure 10.

frequency excitation. It thus convects wall energy in the upstream direction, albeit
very slowly; its mean wall energy density propagation speed is approximately equal
to the magnitude of the group velocity predicted at the appropriate wavenumber in
figure 2b. Upstream of the driver, a new longer wavelength disturbance (wave P) is
seen to be developing. The energy record, figure 12a, shows a change from neutral
stability to instability at approximately 11∆T . This can be associated with the gen-
eration by the leading edge of wave P, which has the properties of a type I wave
(downstream-travelling, spatially growing and with wall energy density propagating
in the downstream direction). Numerical experiments with a longer panel show that
both the upstream and downstream developments found here at t′ = 8∆T occur at
later times. However, the wavenumbers and frequencies of the emerging waves are
the same as for the basic configuration.

Thereafter, the path to continued growth qualitatively follows that described above
for low-frequency excitation. For example, figure 10d, at t′ = 16∆T , displays type I
unstable waves (waves Q and R) both upstream and downstream of the driver. Wave
conversions between type II (upstream propagation of wall-energy density) and type I
(downstream propagation of wall-energy density) waves are not as clearly identifi-
able in, for example, the energy plot of figure 12b as they were in the equivalent
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Figure 15. Records of driver power and energy-dissipation rate at the panel ends for high-
frequency excitation: ——, driver power; – – –, total dissipation rate at panel ends; – · – · –,
dissipation rate at upstream end; - - - -, dissipation rate at downstream end.

low-frequency excitation plot of figure 4b. This is because the two classes of waves
involved in the present experiment have lower-branch wavenumbers on the disper-
sion curve that straddle kp more closely. However, it does appear, once again, that
repeated wavenumber conversions at the panel ends establish a mechanism that is
able to distribute the wall energy to all parts of the panel. In the case of high-
frequency excitation used here, this mechanism prevails despite the initial presence
and growth of a wave that is best described as an absolute instability. The importance
of the absolute instability lies in its acting as an effective initiator for low-frequency
convectively unstable disturbances.

Finally, a plot of driver power and rate of energy dissipation close to the panel ends
is shown in figure 15. In contrast to the low-frequency excitation, it can be seen that,
as predicted by Crighton & Oswell (1991), the mean driver power is positive with
the initial steady state reached at t′ = 2∆T . Following this time, the dissipation rate
balances that of the driver input. This continues despite the fact that instability sets
in downstream of the driver at about t′ = 4∆T . This provides further evidence that
the initial instability in the time range t′:4∆T → 8∆T is absolute in character; an
instability convecting wall-energy density in the downstream direction would have
produced a dramatic rise in dissipation at the downstream end similar to that seen
in figure 8.

(b) Three-dimensional simulations

The two-dimensional simulations of the flexible-wall–flow interaction suggest that
driving the panel at a prescribed frequency cannot prevent the eventual formation of
instability. This might be expected for the low-frequency excitation in which analyt-
ical studies also predict unstable waves. However, it has also been shown that while
high-frequency excitation first yields a steady-state neutrally stable response (as seen
in figure 10a), this breaks down to give instability. From the hydroelastician’s point
of view, it is reasonable to question whether this is an artifice attributable to the
assumption of a panel of infinite span. Thus, we briefly present here the more realis-
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Figure 16. Three-dimensional numerical experiment for high-frequency excitation, ωF = 0.01343
and flow speed U ′ = 0.05; a point excitation is located at the centre of the panel. Fluid flow is
from left to right. Snapshots of panel response at different times: (a) t′ = 0.5∆T ; (b) t′ = 1∆T ;
(c) t′ = 1.5∆T ; (d) t′ = 2∆T .

tic case of a truly finite panel supporting three-dimensional disturbances undergoing
excitation by an oscillatory point driver.

The methods described in § 2 are equally applicable to the three-dimensional prob-
lem. The wall stiffness term is replaced by the biharmonic operator and the boundary
elements used in the flow solution now become panels. The algorithm used for the
system solution is a slightly modified version of that presented in Lucey & Carpenter
(1992b). A 64× 64 SIMD machine was used for the computations. A panel of dimen-
sions 0.3L× 0.3L is used. It has hinged edges on all four sides and, again, damping
has been included in the region adjacent to these edges. The remaining data are
identical to those used in the two-dimensional work.

Figure 16a–d illustrates the response of the panel to high-frequency excitation,
ω′F = 0.01343, at U ′ = 0.05. The flow is from left to right and panel deflections
have been scaled up by a factor of 30 000. The plots are for successive increments of
time 0.5∆T after start-up. Thus the experiment is equivalent to the second group
of two-dimensional simulations described in § 3 (a) except that here we use point
excitation; the two-dimensional experiments are driven by line excitation. This choice
of driver predisposes the panel to three-dimensional waves and, accordingly, more
closely models the situation that is likely to be seen in any real application.

The results indicate that the two-dimensional simulations give a good approxima-
tion to the long-term response evolution. At early times, three-dimensional modified
flexural waves radiate out from the driver. The difference in upstream and down-
stream propagating waves is not great but is identifiable in figure 16a; for a midspan
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Figure 17. Summary of waves found in a series of numerical experiments plotted as discrete
(k,Re(ω))-data together with the dispersion curve.

cross-section, these exactly match the two-dimensional results seen in figure 10a. At
later times, the evolution of quasi-two-dimensional unstable waves is apparent. These
take the form of downstream-travelling waves although, as evidenced by figure 16d,
the instability eventually spreads throughout the panel. In fact, the instability mech-
anism appears to be very similar to that found in the two-dimensional work. In fig-
ure 16d, the wave seen downstream of the driver possesses the same wavenumber as
its counterpart generated at the trailing edge in figure 10c. That it should appear
earlier in the three-dimensional work is a consequence of using a panel of shorter
length and, in some measure, the additional restraints provided by the side edges.

The three-dimensional work thus confirms that the instabilities of the wall–flow
system can be modelled as plane waves even when the source of excitation predisposes
the disturbances to transverse variations. Furthermore, the sequence of events that
leads to the overall destabilization in the two-dimensional work is again found when
a truly finite panel is studied.

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


The excitation of waves on a flexible panel in a uniform flow 3029

Figure 18. Variation of mean driver power with excitation frequency; comparison of present
results with those of Crighton & Oswell (1991): ◦, present work; ——, exact solutions from
Crighton & Oswell (1991); – – –, asymptotic solutions from Crighton & Oswell (1991).

4. Discussion

Results from just two of the two-dimensional numerical experiments were presented
in § 3. However, the present investigation has encompassed a wide range of excitation
frequencies. To provide an overall appreciation of the waves, (k,Re(ω)), that may be
found in such simulations, figure 17 plots the location of each against the background
of the dispersion curve appropriate to an undamped infinitely long flexible plate. Data
scatter might be expected at both high and low wavenumbers, the former reflecting
an increasing lack of resolution in the discretization of the numerical scheme and the
latter because the ratio of wavelength to panel length is high enough to over-constrain
the wave. The data plotted are for an approximately equal number of high-frequency
excitations (ωF > ωp) and low-frequency excitations (0 < ωF < ωp). It is interesting
to note the concentration of disturbances in the wavenumber range, 0.03 < k < 0.12
and the frequency band close to ωp. For the panel being studied, this figure (like
figures 5 and 13) shows that waves in this domain may appear both upstream and
downstream of the driver location.

A second summary plot, figure 18, shows the mean driver power against the exci-
tation frequency. The data for this figure have been obtained by time-averaging the
driver power from results such as those presented in figures 8 and 15. The time aver-
ages have been taken over periods after the evident start-up procedure and before
strong end-effects come to dominate the response of the entire panel. The present
results show excellent agreement with the predictions of Crighton & Oswell (1991).
It may therefore be surmised that the present near-field response matches that pre-
dicted by Crighton & Oswell. In the present context, a possible explanation for the
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driver absorbing energy for responses below ω∗p is that the hydroelastic instabil-
ity found throughout this frequency range converts mean fluid kinetic energy into
flexible-plate energy and thereby effectively drives the line excitation. For an infinite
flexible plate it has been noted that damping promotes instability (see figure 2b)
for the lower-branch range of wavenumbers associated with 0 < Re(ω) < ω∗p; in an
analogous sense, then, the realization of instability is accompanied by energy removal
from the flexible plate.

It is in the far-field response that certain differences appear between the present
work and that of Crighton & Oswell (1991), even at times before wave conversions
at the leading and trailing edges take effect. In the following, we will use Crighton &
Oswell’s wavenumber notation. In the frequency range, ω < ωs, Crighton & Oswell
predict a k+

1 , k+
2 convectively unstable wave downstream of the driver. Our results

find a spatially growing wave here that we have shown to propagate wall energy
density in the downstream direction; we have termed this a type I wave. However, in
the simulations, its frequency does not necessarily equal that of the driver; instead
a wave of this type seems to be selected by amplification rate. Upstream of the
driver, Crighton & Oswell predict two neutrally stable waves. One of these, denoted
k−3 , is a conventional upstream-travelling wave associated with the lower branch of
the dispersion curve for Re(ω) < 0; it propagates energy away from the driver. A
corresponding wave is found in our simulations. The second, denoted k+

3 , is a neu-
trally stable downstream-travelling negative-energy wave with negative (upstream-
directed) group velocity but energy flux directed downstream. This wave then carries
energy towards the driver. The numerical simulations find a similar wave associated
with the lower branch of the dispersion curve where kp < k < kc. However, we find
it to be unstable, albeit with a very small growth rate. This type of wave can also
appear downstream of the driver when the trailing edge is effectively acting as a wave
source; under these circumstances it may be considered as being located upstream
of its point of initiation. We have termed this a type II wave. When it originates at
the trailing edge, we have shown (see figure 7) that it propagates wall energy density
in the upstream direction. We can also show that this form of wall energy density
propagation occurs when its source is the driver. The absence of flexible-plate damp-
ing in Crighton & Oswell (1991) may explain the difference in the stability character
of this k+

3 wave. The analysis of Atkins (1982) of a damped infinitely long flexible
plate showed this wave to be unstable and this is consistent with its classification by
Crighton & Oswell (1991) as a negative-energy wave. In contrast, the present work
clearly shows that damping is not an essential ingredient of the instability mechanism
of the equivalent wave on a finite flexible panel. Furthermore, the overall indifference
of this unstable wave to damping suggests that it does not behave like a negative-
energy wave. Rather, it suggests that, on a finite panel, there is a closer association
with a class C unstable wave in the Benjamin/Landahl classification (similar to a
Kelvin–Helmholtz instability). In associating it with a class C instability, we are
then able to use the group velocity obtaining from a dispersion diagram to signify
the propagation direction of wall energy density and to approximate the speed of
propagation.

In the frequency range, ωs < ω < ωp, waves found upstream of the driver pos-
sess the same character as those described in the previous paragraph. Accordingly,
attention is now turned to waves found downstream of the driver for this frequency
range. In the subrange ωs < ω < ωb, two neutrally stable downstream-travelling
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waves are predicted by Crighton & Oswell (1991). The first is a k+
2 wave which has

a (negative) group velocity directed towards the driver. This violates the usual radi-
ation condition of outward group velocity and so has led to its being described as
‘anomalous’ by Crighton & Oswell. However, they also show that it is a negative-
energy wave and this feature, in combination with its group velocity, means that it
has downstream-directed energy flux. Thus, Crighton & Oswell show that, in energy
terms, the wave possesses conventional behaviour because it carries energy away
from the driver. The second is a k+

1 -type wave. This has a (positive) group velocity
directed outwards from the driver and so is conventional in terms of the standard
radiation condition. However, this wave is shown to be unusual in energy terms; its
energy flux must be directed towards the driver because it also is a negative-energy
wave. The second subrange in Crighton & Oswell’s analysis has ωb < ω < ωp. In
this range the k+

1 wave, discussed immediately above, is also found. Additionally, a
neutrally stable k+

2 wave appears with (positive) downstream-directed group velocity
and downstream-directed energy flux; this is a positive-energy wave and lies on the
upper branch of the dispersion curve. In contrast, all of the other waves predicted
downstream of the driver in the frequency range ωs < ω < ωp lie on the lower branch
of the dispersion curve. In the numerical experiments we are unable to find evidence
of any of these waves. In fact, the behaviour throughout the frequency range ω < ωp
is characterized by spatially growing waves which propagate wall energy density in
the downstream direction and are most closely allied with Crighton & Oswell’s k+

1 ,
k+

2 unstable wave. In the present work we have termed these type I waves. In the
numerical simulations, it may be that the frequency range ωb < ω < ωp is simply
too narrow to isolate the unusual k+

2 and k+
1 waves predicted by Crighton & Oswell.

If so, then this may be the case in a physical experiment. However, it could be that
the present study of a fluid-loaded finite panel represents a distinct system that pre-
cludes comparison with one based upon the assumption of an infinitely long flexible
plate. This possibility is explored below.

The present work has sought to determine the evolution and characteristics of the
waves leading to the overall increase of flexible-plate energy that signifies destabi-
lization of the panel. Within this context, numerical experiments have been used to
determine the propagation of the wall energy density. We now seek a framework, in
the form of a modified dispersion diagram, which can summarize the results of the
numerical experiments in terms of wavenumber, wave frequency and propagation of
wall energy density. The desired dispersion diagram should characterize the response
of a finite panel and thereby represent a continuous assembly of all the waves found
and plotted as discrete data in figures 5 and 13, together with the results of other
numerical experiments. Lucey & Carpenter (1993a) suggested that the condition
of finiteness has an effect which appears to be similar to that of damping in an
infinitely long flexible-wall–flow system. Also, Abrahams & Wickham (1994) found
that damping exercises a significant effect in the infinite driven-wall system. In fig-
ure 19, a dispersion curve for the infinite system has been evaluated for the case
of a damped flexible plate. The value of the non-dimensional damping coefficient
used is high; it is the same as the maximum value in the range of coefficients of dis-
tributed damping investigated and discussed in § 3. We remark that, at early times,
the results of numerical experiments with this value of distributed damping showed
little difference from those of a panel which had no distributed damping in the main
part (the central 90% of panel length). Even at later times, the qualitative pattern
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Figure 19. Dispersion diagram and group velocity, cg, for an infinite flexible panel with plate
damping. Temporal description of wave development (ω = ωR + iωI): ——, ωR downstream;
– – –, ωR upstream; - - - -, ωI × 10 lower branch; · · · ·, cg × 0.01, lower branch.

of wave behaviour in the panel-edge interactions remained unchanged. In figure 19,
the assumption of temporal instability is made. The key feature of this figure, when
compared with the zero-damping case of figure 2a, is the change in structure close to
the point of modal coalescence. With distributed damping there is no longer exact
coupling between lower and upper branches and the convective instability associ-
ated with the k+

1 , k+
2 -type wave pair blends into the divergence type of instability

associated with the higher wavenumbers and Re(ω) > 0 of the lower branch.
The system response predicted by figure 19 is far simpler and seems a closer rep-

resentation of the findings from the present numerical experiments for a finite panel.
This is not to imply that damping and finiteness are equivalent; rather, it seems
that one effect of damping in an infinitely long flexible-plate–wall system is to repro-
duce approximately a key effect of finiteness. Thus, at low wavenumbers in figure 19,
coalescence instability of the k+

1 , k+
2 type is seen. Increasing the wavenumber grad-

ually decouples these into a damped upper-branch k+
2 -type wave and an unstable

lower-branch k+
1 -type wave. On the lower branch, a further rise in wavenumber sees

the k+
1 -type wave reach the point (kp, ω

∗
p) at which coalescence with the k+

3 -type
wave occurs. This yields an absolute instability at ω∗p. For wavenumbers in the range
kp < k < kc, the lower-branch wave is of k+

3 type and weakly unstable. For k > kc,
damped upstream-travelling modified flexural waves of the k−3 type are predicted. In
this model, then, the only clearly significant point on the lower branch is (kp, ω

∗
p).

Waves in the wavenumber region 0 < k < kp are predicted to be strongly unstable
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and to have positive group velocity. The features described above characterize the
type I waves found in the numerical experiments when the group velocity implied by
figure 19 is associated with the propagation of wall energy density. In contrast, waves
in the region kp < k < kc are predicted to be weakly unstable and have negative
group velocity. Similar characteristics are displayed by the type II waves found in
the numerical experiments; such waves have been shown to propagate wall energy
density in the upstream direction. Again, the group velocity from this dispersion
model is to be interpreted as a prediction of the propagation velocity of wall energy
density. The dispersion model of figure 19 thus appears to provide a good description
of the waves and wall energy fluxes that predominate on an essentially undamped
finite panel for wavenumbers where there is strong flexible-wall–flow coupling. The
structure of the dispersion curve of figure 19 renders unlikely any difference in wave
classification between the modal-coalescence instability and the lower-branch (i.e.
divergence-type) instabilities. This gradual merging of instability types as opposed
to explosive coupling was also found by Lucey & Carpenter (1992a) in the hydroe-
lastic study of a finite compliant wall.

From the numerical experiments, it therefore appears that the inclusion of suf-
ficient damping in the analysis of an infinitely long wall–flow system can lead to
predicted behaviour that is more similar to that found for finite panels with fixed
ends. The analysis of Abrahams & Wickham (1994) included plate damping and all
frequencies which would be generated in the start-up procedure. They found that the
system response was ultimately dominated by an absolute instability at (kp, ω

∗
p). It

is noteworthy that the time-scales upon which this instability grows are long. Only
with a substantial passage of time would the absolute instability come to dominate
the response. Thus, the detailed predictions of Crighton & Oswell (1991) would hold
before this time and after the start-up transients have convected away. The present
investigation of a finite panel also features an absolute instability close to (kp, ω

∗
p)

at early times and so shows agreement with Abrahams & Wickham (1994). How-
ever, at later times we show that the panel’s unstable behaviour is dominated by
spatially-growing waves which are then repeatedly excited by the panel ends. The
effective growth rate of the whole flexible panel arising from this mechanism out-
weighs that of the absolute instability. Here, the absolute instability has been shown
to be important only for high-frequency excitations as a precursor to the spatially
growing type I and type II waves, whereas for low frequencies these instabilities are
initiated immediately after start-up.

Given that the present investigation highlights the importance of the convective
growth of disturbances throughout the range of wavenumbers for which the lower-
branch waves have positive phase speeds, the dispersion curve of figure 19 is, perhaps,
inappropriate. Accordingly, figure 20, shows a similar model of dispersion devised to
predict the waves on a finite panel but based upon the assumption of convective
instability. All disturbances are assumed to be proportional to exp [i(kx− ωt)] with
k = kR + ikI; negative kI indicates instability for increasing x. The principal features
of figure 19, discussed above, are equivalently reproduced. It is found that kI is
positive for the downstream-travelling wave found upstream of the driver. In the
direction of phase velocity this might, at first sight, suggest an attenuating wave thus
contradicting the prediction of instability by the temporal approach. However, this
wave has negative group velocity. If the group velocity is used to signify the direction
of wall energy density transmission, it is propagating in the upstream direction and so
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Figure 20. Dispersion diagram for an infinite flexible panel with plate damping. Spatial descrip-
tion of wave development (k = kR + ikI): ——, kR, downstream; – – –, kR, upstream; – · – · –,
kI × 10, lower left branch; - - - -, kI × 10, upper left branch; · · · ·, kI × 10, right branch.

+kI would represent the growth rate. In the numerical experiments this corresponds
to a type II wave which convects wall energy density in the upstream direction and
slowly amplifies as it does so. It is noted that singular behaviour occurs at (ωp, k

∗
p) in

the solution of the proposed dispersion model. This is seen in the imaginary parts of
the wavenumber and it suggests the coalescence of convective waves at k∗p. Abrahams
& Wickham (1994) also noted that the inclusion of damping fundamentally changed
the morphology of the complex k-plane thereby generating an absolute instability.
Such behaviour might be qualitatively anticipated; as ωp is approached, the group
velocity tends to zero and thus any convective representation of instability must
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have growth rates tending to infinity. A better approximate approach to modelling
the instability exactly at (ωp, kp) is to adopt the temporal assumption (as used in
generating figure 19).

In the proposed dispersion models of figures 19 and 20, we have located waves as
existing either upstream or downstream. This description is applied relative to the
driver at early times of the numerical simulations. Following the principles laid down
by Crighton (1994), we similarly note that, at later times, the panel ends act as
sources for waves. For example a type II wave is excited by the trailing edge; it thus
appears in an upstream location and the notation used in the dispersion diagram
remains consistent. So, too, a type I wave is excited at the leading edge; it then
appears in a downstream location relative to its source of excitation.

Experimental studies of hydroelastic instability tend to focus on the flow speed
at which instability first appears. The study of an infinitely long flexible plate with
some damping (Abrahams & Wickham 1994) suggests that in the long-time limit
this flow speed would be zero due to the absolute instability at (kp, ω

∗
p). In contrast,

experimental studies necessarily use a finite panel and the structure of the flexible
wall is such that more than one structural effect contributes to the overall interfacial
restorative force. Gad-el-Hak et al . (1984) and Hansen & Hunsten (1983) used a vis-
colelastic slab as the flexible wall; in this case, a combination of the material elastic
modulus and its depth determines the effective restorative force. In Djugundi et al .
(1963) a flexible plate resting on a spring foundation constituted the flexible wall;
in this case, the combination of plate bending stiffness and spring stiffness provides
the overall restorative force. The more complex flexible wall modelled by Dixon et
al . (1994), based upon the structure of the compliant wall used in the experiments
of Gaster (1987), comprised a flexible plate adhered to a viscoelastic substrate. In
this case, the restorative force comprised contributions from the plate bending stiff-
ness, the substrate elastic modulus and the thickness of the substrate. For all of these
types of multicomponent flexible walls, a non-zero critical speed is found. This critical
speed is determined by the combination of flow and structural parameters. The first
instability encountered, which is attributable primarily to potential-flow effects, has
often been termed static divergence (see, for example, Gad-el-Hak et al . 1984; Hansen
& Hunsten 1983). The instability appears as a very slow (almost static) downstream-
travelling wave. It also has the character of an absolute instability because growth
is seen at all spatial locations of the compliant wall. The identification of (kp, ω

∗
p) as

a point of absolute instability in the present investigation and that of Abrahams &
Wickham (1994) is consistent with the experiments. For a compliant wall with more
than one structural parameter, theoretical predictions of divergence instability have
it first appearing when the maximum on the lower branch of the dispersion curve
first crosses the k-axis with increasing flow speed. Exactly at the critical speed, this
maximum lies on the ω = 0 axis yielding a static wall deformation. An example of
this type of critical situation is seen in figure 4 of Dixon et al . (1994). Just above
the critical flow speed, a small loop of the the lower branch lies in the upper half
of the frequency plane and so the maximum takes a very low positive value of ω.
Thus, a wave is predicted at the maximum which has a very low positive phase speed
and which is absolutely unstable because it is now represented by the (kp, ω

∗
p)-point

of the lower branch of the dispersion curve. These predictions qualitatively agree
with the realization of divergence instability in experimental work. A further rise in
the applied flow speed sees what experimentalists (see, for example, Dugundji et al .
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1963) describe as flutter instability replacing the divergence. In such a regime, theo-
retical predictions then suggest that a range of waves may be unstable; these can be
identified with the downstream-travelling part of the lower branch of the dispersion
curve which moves into the upper k-plane. The flow speed used in the generation of
figures 19 and 20 is representative of this situation. Thus, spatially growing waves can
now coexist with an absolute instability modified by the higher flow speed to have a
higher phase speed. The present work then suggests that ultimately these spatially
growing, or flutter-type, waves would characterize the overall destabilization process
of a panel at post-critical (divergence-onset) flow speeds.

5. Conclusion

The method of numerical simulation has been used to conduct an investigation of
the response of a finite flexible panel to oscillatory line excitation when a mean
flow is present. A series of numerical experiments has been carried out in order to
identify the different waves that might exist on the panel and to compare these, where
appropriate, with the predictions of theoretical studies based on the assumption
of an infinitely long flexible plate. The present study finds the overall response of
the panel to be unstable even at very low flow speeds and that finiteness plays an
important part in the detailed mechanism responsible for the unstable behaviour.
This is because the present method allows frequencies different from that of the
driver to enter the response; these other frequencies may be generated either in the
start-up process or by energy scattering at the panel’s ends. However, at early times,
qualitative agreement is found with the theoretical studies of an infinitely long plate.

Prior to strong interactions at the panel’s leading and trailing edges, the response
of the panel can be grouped into two different types: low- and high-frequency exci-
tation. The frequency that divides these two groups is ωp. This is the frequency at
the maximum of the lower branch in the (k, ω) dispersion diagram. Low-frequency
excitations can be characterized by a downstream-travelling spatially growing wave
found downstream of the driver; this has been shown to convect wall energy density
in the downstream direction. This corresponds to the k+

1 , k+
2 convectively unstable

wave of Crighton & Oswell (1991). Upstream of the driver, two waves are found. One
corresponds to a conventional upstream-travelling modified flexural wave denoted k−3
by Crighton & Oswell. The other is downstream-travelling and marginally unstable.
A wave with similar features, also found in the numerical simulations but emanating
from the trailing edge, is shown to propagate wall energy density in the upstream
direction. This response corresponds most closely to the k+

3 negative-energy wave of
Crighton & Oswell. However, on a finite panel, the unstable character of the wave is
not dependent upon wall damping. A subtle difference, warranting further investiga-
tion, may exist between the present finite-panel system and the Crighton & Oswell
study of an infinitely long flexible plate. In the present work, the two spatially growing
instabilities act to transmit wall energy to the panel edges. The wave downstream of
the driver has a much higher growth rate and would be the most dominant feature in
a physical experiment. High-frequency excitations also feature a propagation of wall
energy density to the leading and trailing edges by an unstable wave. In this case the
first response is one of modified flexural waves radiating out from the driver. After an
initial steady state is achieved, breakdown occurs through the growth of an absolute
instability. Abrahams & Wickham (1994) predicted the existence of absolute insta-
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bility for a damped infinitely long flexible plate. In the present finite-panel work, the
corresponding instability is not dependent upon the inclusion of panel damping. The
amplitude growth associated with this instability spreads sufficient wall energy to
the leading and trailing edges so that strong end effects come into play. In the present
work it has proved impossible to find the unusual waves predicted by Crighton &
Oswell (1991) in the frequency range ωs < ω < ωp. This could be because the present
numerical simulation is too coarse a tool to isolate the responses in this narrow fre-
quency band or because the finite panel does not necessarily respond at the driver
frequency. In the present numerical simulations, unstable waves at frequencies other
than that of the driver may be preferentially excited on the basis of amplification
rate. On an infinitely long flexible plate with single-frequency continuous excitation
these would be convected away downstream.

At later times, both low- and high-frequency responses show the same qualitative
pattern of behaviour. Wave conversions at the panel ends generate a succession of
spatially growing waves which are capable of propagating wall energy density both in
the downstream and upstream directions. For example, an unstable wave propagating
wall energy density downstream may first grow. As it reaches the final extent of
its growth, limited by the panel’s finite length, it excites a different unstable wave
which propagates wall energy density in the upstream direction. At its initiation,
the amplitude of this new wave effectively matches that of its precursor. The spatial
growth of this wave in the upstream direction is halted by the leading edge. At
the leading edge, it then excites a spatially growing wave propagating wall energy
density in the downstream direction and the destabilization sequence repeats itself
once more. Both the line excitation and the panel ends can act as energy scatterers
for wave initiation, although for larger amplitudes the driver becomes increasingly
ineffective. In fact, any strong local inhomogeneity in the panel, such as a patch of
high stiffness, can act as an energy scatterer.

A dispersion diagram for the waves found on a finite panel has been artificially
generated by modifying the dispersion relation for an infinitely long flexible panel
through the inclusion of substantial flexible-plate damping. The structure of the
resulting diagram appears to represent closely the findings of the present numeri-
cal experiments. The pair of spatially growing waves that dominate the long-time
unstable behaviour of the panel, termed type I and type II waves in the present
work, are identified on this dispersion diagram as straddling the point (kp, ω

∗
p) where

absolutely unstable behaviour exists. The direction and mean speed of propagation
of wall energy density effected by the type I and type II waves are predicted by the
group velocity associated with this dispersion diagram.

A particular feature of the present finite system is that spatially growing waves
can organize themselves so that all locations of the panel experience disturbance
growth. For an infinite system, only an absolute instability could achieve this. Fur-
thermore, in the present work, this convective mechanism dominates the response
despite the presence of an absolute instability. Thus, in the destabilization process, an
experimentalist could expect to see a succession of downstream-travelling waves and
continuous amplitude growth. Careful observation would identify different dominant
wave types at successive times in the evolution: a type I longer-wavelength distur-
bance with rapid growth and higher phase speed alternating with a type II shorter
wavelength disturbance spreading from the trailing edge and having a lower phase
speed and much slower growth. The time period between these alternating modes of
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response would be determined by the panel’s length. This sequence of events could
be expected to continue to yield amplitude growth until nonlinear effects became
important.

The sequence of hydroelastic events described above might also be modified if a
boundary layer were to be included in the flexible-wall–flow model. The modified
flexural wave typified by the upper branch of the dispersion curve in figure 2 is prone
to travelling-wave flutter when irreversible energy exchanges are made possible by the
action of a boundary layer. This convective instability may be significant given the
apparent predominance of convective wall energy mechanisms in the present system.
This feature of a real flexible-wall–flow interaction requires further study along with
nonlinear effects. Lastly, it is remarked that the wall model used in the present
investigation is particularly vulnerable to hydroelastic instability. Comprising only a
flexible plate, its critical (divergence-onset) flow speed approaches zero as the panel
length is increased. Attempts to control hydroelastic instability using line excitation
will manifestly fail given the present results. A more practical problem might be to
investigate whether a flexible wall comprising a combination of restorative elements
is amenable to control.

The author thanks Professor P. W. Carpenter (University of Warwick) and Professor I. D.
Abrahams (University of Manchester) for their valuable suggestions during discussions of this
work. The author also thanks Professor D. G. Crighton (University of Cambridge) for his many
useful comments on the work.
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